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SCATTERING AND NONSCAT'ERING OBSTACLES*

VICTOR TWERSKYt

1% ! For Joseph B. Keller, friend, colleague and teacher

IAbstract. Two problems of Helmholtz's equation for a wave incident on an obstacle are considered.

For the first, the scattering problem, the obstacle's response satisfies Sommerfeld's outgoing wave radiation
condition, and the net radiative response is positive; for the second, the response satisfies a standing wave

J condition (an appropriate combination of outgoing and incoming waves) such that the net radiative response
N3 is zero. The essential features of the solutions are exhibited in terms of amplitude functions g (the usual

scattering amplitude) and g', and the interrelation of the functions are stressed in the derivation of integral
C equations g(g) (introduced earlier in multiple scattering contexts). The scattering amplitude g is always

Scomplex, but the simpler function g' is shown to be imaginary for nonabsorbing obstacles having inversion
symmetry. Long-wavelength approximations for g' may be obtained from potentiaJ.4heory and perturbation
procedures, and corresponding approximations for g then follow from ,g, _' /

Introduction. We consider two problems for Helmholtz's equations correspond-
ing to a wave incident on an obstacle. The problems differ in the obstacle's response
via radiation: for the first, the scattering problem (an outward radiating obstacle), the
net radiative output is greater than zero; for the second the net radiative output is
zero. For brevity, the obstacle in the second problem is labeled radiationless or
nonscattering, but its contribution is in the form of a standing wave so the labels refer
to net energy flow via radiation. Section 1 defines the problems, and delineates
analytical and physical differences.

The solutions of the problems are characterized by amplitude functions g (the
usual scattering amplitude) and g'. Section 2 sketches derivations of the general
theorems for g with emphasis on procedures that can be applied for g'; § 3 derives
the analogues for g', and § 4 applies the same procedures to derive integral equations
g[g'] and their inverses. The function g' is simpler than g. The scattering amplitude
g is always complex, but g' is shown to be imaginary for lossless (nonabsorbing)
obstacles having inversion symmetry. Long-wavelength approximations for g' may be
obtained from potential theory solutions and perturbation procedures, and correspond-
ing approximations for g then follow from g[g'].

We considered g'[g] = g'[j; g] initially in connection with multiple scattering of
waves by periodic arrays of obstacles [1]. The multiple scattering amplitude (G) of
an obstacle in the array was related to its response (g) in isolation by a functional
equation G = G[S; g], where the operator S equaled a discrete infinite sum less the
analogous integral. It proved convenient to introduce g'[S; g] corresponding to g
stripped of radiation losses and to express G functionally in terms of g' and a modified
operator S'. The form G[S'; g'] was particularly suitable to analyze radiation losses
appropriate for the array. The function g involves radiative losses over the continuum
of real directions, but G involves only the set of discrete directions corresponding to
the propagating modes of the array [1]. Working with g' led directly to simple energy
conserving approximations for G, and to rapidly converging representations. The
required properties of g' = g'[1; g] were deduced from known properties of g.
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Related work on multiple scattering by pair-correlated distributions of obstacles
[2] led to functional equations G[g] involving more complicated operators than S.
To reduce these to tractable forms G[g'] for nonsymmetrical lossy obstacles required
additional properties of g'. The present paper derives these additional properties of
g' (as well as those obtained earlier from g) by direct considerations of the radiationless

4bstacle problem.
The following includes material on some elementary properties of the scattering

amplitude g and the associated field E3]-[8]. This material serves to distinguish g and
g', and to stress that the nonscattering problem for g' does not correspond to a
conventional scattering problem subject to special constraints for decreasing the
magnitude of g. The nonscattering problem we consider is a standing wave problem
ancillary to the scattering problem; similarly for the associated amplitude g' (labeled
earlier as the modified or transformed amplitude) and g.

1. Statement of the problems. For the problems at hand corresponding to a plane
wave 0 (r) e -"' of angular frequency o incident on an obstacle, we deal with solutions
of Helmholtz's equation [3]-[8]

(1) (V2 + k2 )0 =0, k =IkI
where V2 = V V is Laplace's operator and k is the propagation parameter. We suppress
the time factor e- ", but all waves we consider have implicit period 2 r/w in t and
phase velocity co/k; the plane waves have explicit period 21r/k (the wavelength A) in
the space coordinates.

A plane wave is represented by

(2) 6=e ik, k=k, r=r4

with directions of incidence and observation given by unit vectors k and i. In three
dimensions,

(3) i =i(O,)=icos0+(icos(p+5sin() sin0, i=o=i(Oo, (o),

with 0-_ 0:_ ,r, 0 5 v < 21'; in two dimensions, we take p =0 and 0_ 0 < 21r; in one,
i = +i, and 0 = 0, ir. We consider three-, two-, and one-dimensional problems in
parallel (corresponding to bounded obstacles, and to normal incidence on cylinders
and slabs respectively), and use three-dimensional terminology for all cases. If three
different forms of a function or parameter arise, they are sequenced in order of
decreasing dimensionality. The center of the obstacle's smallest circumscribing sphere
(of radius a) is taken as the phase origin (r = 0).

An obstacle (in general, a discontinuity in the parameters associated with the
medium in which 4 propagates) is specified by its surface 9', volume ', size ka relative
to wavelength, and by conditions on 0 in 9' and V. An obstacle is labeled impenetrable
if , = 0 in Y" and satisfies on 9' conditions such as: either

(4) fr=0

or
(5) i - ona. = 0,

with A as the outward normal into the external volume V, or

(6) a,* = ZO,

where Z is constant with Im Z 5 0. (These are the usual Dirichlet, Neumann, and
Robin exterior boundary value conditions respectively.) Physically, e.g., for small
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amplitude acoustics with i, as excess pressure, the first two correspond to free (pressure
release) and rigid surfaces respectively, and the third is a generalization in terms of
the impedance Z.

An obstacle is labeled penetrable if ., satisfies transition conditions on .9, such as

(7Y) 41E = 0i, 8a#E = B 8.4i,

where E and I stand for exterior and interior (a temporary convenience), and 0t is
a nonsingular solution in V of

(7 V) (V2 +K 2)0 =0, K =k77, i 2 =C/B.

Here the obstacle's relative parameters C and B are constants with Im C -0 and
Im B =< 0, and n7 is the corresponding complex relative index of refraction. In acoustics,
for real values, C is the obstacle's relative compressibility and 1/B its relative mass
density; complex values account for some thermal loss effects, compressive viscosity,
etc. The Y9 conditions correspond to continuity of excess pressure (0) and normal
excess velocity (proportional to fi- Vt).

Conditions (4)-(7) are illustrative. If we indicate the solutions for two arbitrary
directions of incidence ii, i2 by 01, 02 (each subject to the same conditions on .9' and
V), then the subsequent development applies for general obstacles for which Green's
surface integral for 1, 02 vanishes on Y9. Introducing a symbolic form (and
normalization constants for subsequent applications),
(8) ,=--c [v(r')8 u(r')-u v] d.9(r'), C = ki

{ f ~V~ 4 i4 i2k'

the development applies for all cases such that [71, [8]

(9) {141, 42} = 0.

By inspection, it is clear that (9) covers the special cases (4)-(6). To show that (7) is
also covered, we use (7.Y) and then apply Gauss' theorem to obtain an integral over
V which vanishes by (7).

The conditions on the nonvanishing imaginary parts of Z, C, B correspond to
energy absorption by the obstacles (lossy obstacles). Changing the signs of the
imaginary parts corresponds to energy production (gainy obstacles, or negative-lossy
obstacles). If 41 satisfies (4) or (5), or (6) for real Z, or (7) for real B and C, we label
it as lossless. More generally, a lossless obstacle subject to (9) also satisfies [7], [8]

(10) {0", 4,2} = 0,

where 1 * is the complex conjugate of 1. The statement after (9) applies equally for (10).
In general, (10) is not satisfied. If we normalize the incident energy flux vector as

(11) Re (4,*VO/ik) = k,

with unit energy density in unit area normal to i, then for lossy obstacles the net
energy flow into Y9 (the absorbed energy) is given by

(12) -f Re((1*V(,/ik)'ldY9=-2roo{o*,'}ino'A, Oo = Ilick,

where aA > 0 is the absorption cross section. Were 0
A < 0, we would relabel it -orp

with op>O, and cancel the minus signs to discuss energy production (negative-
absorption).
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The two classes of problems we consider are determined by different conditions
for 0 - 0 on the surface

(13) S = lim S(r).

We label S as the spherical surface at infinity, the volume V external to 9" as the
shell volume, and suppress limit operations in general.

One problem, the scattering or radiating obstacle, is well-posed if we supplement
(1) and (9) by the Magnus-Wilcox form of Sommerfeld's radiation condition [3], [4]
for 4, -40 = u (r),

(14) i=f Id,.u-iku 2 dS=0.

This condition leads to [4]

(15) fIU1 2 dSb, fJu 12dS-b'

with b and b' finite, and to [4]

(16) f Re (u*aru/ik)dS=f Re (u*Vu/ik)' Ad = 2o°{u*,u}Os>O,

where Os is the scattering cross section. Equation (16) states there is net energy outflow
from the obstacle [3], [4]. The associated wave ue -"' will be shown to have phase
kr - wt for r - Xo corresponding to a wave u e-' ' outgoing from r =0. The sum
a = o-A + os, the total energy cross section, will be shown proportional to the interfer-
ence terms of 'k and u in the forward direction i = i. Thus o- is a measure of the
energy the obstacle derives by interference of 4, and u and dissipates via absorption
(conversion to heat, to radiation with different w, etc.) or diverts as scattered radiation
over the continuum of directions i.

Because o's >0 in (16), the energy is outflowing from the obstacle which thus
represents a secondary source of radiation. Were we to change the sign in (14), we
would obtain as < 0, and energy would flow into the obstacle corresponding to a sink
of radiation. The associated wave u - e-" would have phase -kr - Wt for r -
corresponding to a wave incoming to r = 0.

The second problem we consider, for 4, = 4' = + u' subject to (1) and (9), is
that of the radiationless obstacle

(17) J Re (u'*d,u'/ik 0,

(18) up 1(u -u-), I*= flau iiku*12 dS =0,

where u' represents a standing wave, an appropriate combination of an outgoing and
incoming wave corresponding to zero net radiation. The S integral in (18) gives (15)
for u*, and -r ! 0 for (16). In order to facilitate discussion of u', we first consider
the radiating obstacle specified by u subject to (14). The development for u covers
aspects common to both u and u' with emphasis on procedures that apply for both,
but some elementary properties of u and its associated scattering amplitude g are
included to delineate differences between u and u'.
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2. The scattering obstacle; the amplitude g. We apply Green's theorem to u and

(19) Xo(k Ir - r') = Yo(p) = h(0 (p), H ) (p), e' P,

where Yeo, the appropriate zeroth order Hankel function of the first kind, is the
normalized free-space Green's function. We consider a fixed observation point r in
the shell V(r'), exclude the singularity of Yeo by a limiting sphere with radius r - r'l -* 0,
and obtain u as the difference of Green's surface integrals over 9" and S

(20) u (r) = {,Yo(k Ir - r'i), u (r')} - c J (Wo8AU - u angeo) dS.

We proceed essentially as in [4].
The integral over S can be written in terms of

I, = J ,,(a u -iku) dS, 12 f Xo(u/r') dS, X0 -e- X(kr') e -ikr'

where i c(r') - 1 - -11 2 and dScx(r')" -' for m =3,2,1; 12 does not arise for the
one-dimensional case, and the limit for r'-* oo is implicit. Using Schwarz's inequality,
and comparing i1!2 with I of (14) and 11212 with b of (15), we obtain J(.)dS=0 in
(20). Thus

(21) u (r) = {Jo(k Ir - r'l), u (r')} = { o, u },

with the brace operation over Y9(r') as in (8) or over any surface that separates Y9
from r, is a radiative solution of Helmholtz's equation [3], [4]. For r - oo,
(22) u (r) - Ye(kr)g (i, k),

(23) g~i k) - iki'r, U (Ir')} = {46 _F7 U I 4' U),

with &Y as the asymptotic form of Yo, and g (i, i) as the normalized scattering amplitude
[7], [8]. The function Ye differs from Y'o only in two dimensions, i.e.,
(24) 0() =e '  1"o)/2 e i-iw/4, "eip

In one-dimensional problems we use p/k = Iz I = ±z and g(+i, i). For all cases we
write the phase of the associated wave as kr- ot corresponding to a wave outgoing
from r = 0.

The scattering amplitude g not only determines u for r - oo (i.e., in the far-field
kr >> 1, r >> a) but for all r > a, and at least for some r _ a. Substituting Noether's [6]
and Sommerfeld's [5] complex spectral representation for Wo into (21) and using the
definition (23) for g, we obtain [8], [7] a corresponding spectral form for u. Thus, at
least for r > a for all , and for r greater than the obstacle's projection on i,

(25) u(r) = I e '' g(f, fi).

In three dimensions [8], tc = F(0c, ve) and = (I/21r) J dfl(Oc, Vc) with contours [6] as
for ho"'; in two [7], Pc = P(8,) and j = (1/ ) J dOc with contour [5] as for H~o ; in one,
Pc = :i and fc selects the sign corresponding to z = *tjz 1. (The associated integral
operator for Jo = Re Wo is the mean (AM) over real directions of observation.) The
brace operator in (23) specifies g in terms of u, and the L operator in (25) is an inverse
for u in terms of g. Other inverses, and complete convergent and asymptotic expansions
of u for large kr (in terms of g and its derivatives with respect to angles) are discussed
in the literature [7]-[10].
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From the general obstacle condition (9), in terms of uO , + ui, we have

(26) {01, 02} ={0 +U1, 02 + U2} =f{-1, U2} + {ul, 4 2 } = 0,

where {, 2} vanished by Green's theorem and (V2 + k 2)(# = 0 in V. The term {u 1 , U2}
vanished by using Green's theorem to convert the Y" integral to V plus S integrals;
the V integral is zero from (1) for u, and the S integral is zero because the asymptotic
form u of (22) is appropriate. From (26), we have {1, u2} = {02, ut}; by the definition
of g as in (23) this corresponds to

(27) g(-4i, ?2) = g(-? 2, fl), g(p, k) = g(-k, -i),

i.e., to the usual reciprocity theorem.
Proceeding similarly for {1, 412}, we have

(28 10, 02} ={40, U2}+{U*, 42}+{u1*, U2}(28)
=--" (I, ?2) +g*(f2, ?1)

+ C f (U *1 aU2 -U2a.U *) dS,

where we used {U *, 02} = -{2, U*} = {-*, u1}*. In the integral over S, we substitute
the asymptotic u of (22) to obtain

(29) {4'fr*, 02} = g(r0, i2) +g (r, rl) + 2.0g*(r, 9)g(F, r2 ),

where A is the mean over all values of i. Explicitly

21 ' 2w
(30) .a 3 = dfl(O, ,€) = f dp dO sin 0, 102 = dO,

and W , is one-half the forward and back values.
For lossless obstacles, (10) requires {0, 02} = 0 and (29) reduces to

(31) -g(_ 1, i2)- g*(i 2, il) 2g*( )g( , i 2).

In particular, if the obstacle has inversion symmetry (so that r on Y implies -r on
.9'), then from (27) we have g(fl, i2) = g(%, ii), and from (31),

(32) -Re g0 1, 12) =Ag*(r, r1 )g(t, ?2);

for such symmetry, the right side is real. If 1im gI >> IRe g1, then Re g is of order (IM g) 2

and (32) may be used' 1,12 to construct Re g from approximations of Im g.
From (31) for = 2= k, we obtain the forward scattering theorem with no

requirement of symmetry,

(33) -Re g(, ) =jg(t, J)12 = u*, u} =S crso

in terms of os of (16). This relation corresponds to the energy theorem for lossless
scatterers: the energy derived by the obstacle via interference of the incident wave ,
with the scattered wave u in the forward direction i is radiated over all directions f.
The theorem also states that if Re g(i, i) = 0 (if there is no interference of 4* and
u), then g(f, i) = 0 for all ? (then there is no scattering): Re g(, i) vanishes only if
.Wig( t , j))2 vanishes, and this requires Re 2 g(pj)+Im2 g(p, )=0, from which
Re g(f, k) = Im g(, )=. Since £ is arbitrary, Re g(, )0 implies g(F, 0) for
all t.



SCATTERING AND NONSCATTERING OBSTACLES 717

For lossy obstacles, from (29) in terms of (12) and (16),

-Re g(k, k) - {,/*, 'I} +f{u*, u} = (uA +(s)/O'o,(34)
41r 4

(o--- ',

which states that the energy derived by the obstacle via interference of 4) with u is
balanced by the energy absorbed and reradiated. Because (rA and ors are positive,
both must vanish in order for Re g(I, k) to vanish; if there is no interference, there
is neither absorption nor scattering (no obstacle). On the other hand for a gainy
obstacle, such that excitation by 4) causes it to produce energy -orA = orp > 0, then

(35) -(r0 Re g(i, i) = -op +as

may vanish: if up = as, no energy is contributed via interference of 4 and u; the
energy up produced by the obstacle balances the energy it radiates. Although
Re g(i, i) may vanish for a's 0 in (35), the converse is ruled out (exczpt for the
trivial case); the vanishing of us =og k)j2 implies Reg(k, k)= 0, so that rp
would also vanish (no obstacle). If up > rs, then Re g(k, k) >0 and the constructive
interference between 4) and u is a result of the energy produced by the obstacle.

For the general case specified by (28), the analogue of (34) is

-g(il, 12)-g*(r2, l) = -{Ir*, tf2} + {u*, u 2} =2((A
1 +2. 1 /o,

(36) u"S = (uoig*(r, rt)g(, r2 ).

If the obstacle has inversion symmetry, the left side reduces to -2 Re g(it, i2) as in
(32), and ,2,' and 2'1 are real.

3. The nouscattering obstacle; the amplitude g'. We consider the problem for
)' = 4 +u' defined by (1), (2), (9), (17) and (18). The problem for 0)' differs from the

scatturing problem for 41 in that the radiation condition (14) designed to correspond
to net outgoing radiation (16) is replaced by the nonradiating (17) standing wave
(18) conditions. Relabeling the outgoing Green's function (19) and introducing its
complex conjugates as the incoming one,
(37) 'o= = Ye°o1 ,  Yet =  Ye. = 02

we see that the standing wave Green's function

(38) 2(yo- Yet) = i Im wo = ivo

has the same singularity as Zo.
Applying Green's theorem to /io and u', and proceeding as for (20), we obtain

u'(r) = {ifto(k Ir -r), u '(r')}- (I, +122 - 112 -121),

(39) u' = (u+ _U I- _ U- u(2)),

41 = c i) dS.

The integrals It1 and 122 can be expressed in terms of

I1 -f L4(Fiku)dS, 1*2 f Yeo(uIr') dS;
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comparing 1I 2 with I* of (18), and I 2 and b of (15), shows that II and 122 vanish
essentially as discussed for (20). The integrals 112 and 121 involve analogues of 12 in
terms of YeuT which also vanish by comparison with b, so that the key integrals are

f ) u= iku)d ±=Ji2kl fu*dS,

where J*, differing from 1' only in the interchange of W' and W-, vanishes by (18).
Consequently, to eliminate J(.) dS of (39) we require

(40) R = f (You + - u-) dS =0

which constrains the amplitudes of u + and u -. Thus subject to (40), we have

(41) u'(r) = {i.Pfo(kr-r'J), u(r')1 l2g u'}-H{e',u'}

For r - oo,
(42) O'r) - 2'e(kr)g'(i,ki) - (kg(, i),(42)r g(-r k),

(43) g'(i, k) = {e -ik .,,, u'}

where 9+ = Y' of (24), Ye- = Ye*, and g' is the amplitude for the radiationless problem.
For all cases, u' e - l" consists of outgoing plus incoming waves with corresponding
phases kr - ot and -kr - ot.

To ascertain the import of (40) we consider u ' further. From ItI = 122 = 0, and
from the signs associated with Y (p)/i for p -* 0, we have
(44) u , r) = ±{n', u } u '  + rt 'fe~ i t  u: = +±Yre(± ),

and consequently

(45) u'(r) =2 (u + - u) rg (o) - -),

where i was suppressed as unessential. Alternatively, from (41) with u' in the braces
replaced by 2(u+ - ),

u'= u -}-{ r, u -u

(46) '_1 + -(m - [+ (,

- [g (o-g()]-' [g (-r)--g-(-i)

From (45) and (46),
(47) g+(M = 2 [g(?) -g-(?)], -g-(-0) = [g+(-) -g-(-N)]

so that the amplitudes are related by

(48) g() = -00

for all i. From (42), (45) and (48), we also have

(49) g'(, k) = g+(?), g'(-i, fI) = -g-(-?) = g+(-P)

Substituting (44) into the constraint R = 0 of (40), we see that it corresponds to

(50) R J Y[0g-()+ g-t)]dS=0,

or equivalently, to the requirement that

(51), d[ '(,) - g,'(-?, fi)] = 0.
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That the mean value in (51) vanishes follows from the general form

(52) I[f() -f( -)] = 0,

i.e., i is a dummy and the operator .A means integrate over all i. Thus the constraint
R = 0 is satisfied and the procedure is fully consistent.

We now apply (41)-(43) to parallel the development (26)-(36). Because 0'=
4 + u' satisfies the general obstacle condition (9), we have

(53) {W, i021={1 {, u2}+{u, 62} + {u', U'}s = 0,

where {41, 02} vanished, and {ulj, u2} was converted to an S integral via the discussion
for (26). On S, we use (42) to reduce the integral to

(54) 19[g'(P, il)g'(-i, i 2) - g'(-i, i )g'(i, i2 )] = 0,

which vanishes by (52). Thus (53) reduces to (0 1, u2}+{u,4 2 }=0, and proceeding
as for (27) in terms of (43), we obtain

(55) g'(-iI, i2) = g'(-f2, il), g'(i, ) = g'(-k, -F),

i.e., the same reciprocity theorem as for g.
Proceeding similarly for {4i'V *, 41}, we construct the analogue of (28),

(56) {O i*, 42'} = g'(il, i 2 ) + g'*(i 2, il) + {u ]*, U2'}s.

Using the asymptotic u' of (42) on S,

(57) {u'*, u s =0[g'*(i, i 1)g'(, i 2)- g'*(-i, i)g'(-A, ^2)1 = 0,

which vanishes by (52). The special case of (57) for 1 =i2=k corresponds to the
analogue of the scattering cross section:

(58) 0,S = ,o- Ig'(i, j)1 2 _ jg'(-i, k) Ij = 0.

Thus, the obstacle is radiationless in the sense required: there is no net outflow or
inflow of energy in the form of radiation over the continuum of directions i. Con-
sequently (56) reduces to

(59) -g(rV, i 2)- g'*2, = -', 4,21 = 2A'A (i2 , rl)/Gro,

i.e., to the analogue of (36) for no scattering losses. In particular, for il = i2= k,

(60) -Re g'(k, ) = -{0'*, 0'} = O7 /cr0,

where orX is the absorption cross section of the radiationless obstacle. The energy
theorem (60) states that the energy the obstacle derives via interference of 46 and u'
in the forward direction is dissipated by absorption. The presence of the interference
term qualifies the label radiationless introduced for brevity: the label radiationless is
defined by (17) and (58).

If the obstacle is lossless, then (59) reduces to

(61) g'(91 , t 2) + g'*(t2 , t) = 0.

If the obstacle has inversion symmetry,

(62) Re g'(1, ?2) = 0

and even if it doesn't, the forward value of (61) satisfies

(63) Re g'(i, ) = 0.
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There is no interference of 0 and u' for this case; the obstacle neither scatters nor
absorbs, so no energy is called for.

4. Interrelations of g and g'. The general obstacle condition defined in (9) was
applied as an operator to two solutions 401, 402 for the scattering obstacle in (26) and
to two solutions O', 4, for the nonscattering obstacle in (53). This led to the same
reciprocity relation, (27) for g and (55) for g', for the values of the amplitude with
arguments involving two arbitrary directions of incidence il, i2. We now apply the
operator to 01 and 02', where 0 and ,' satisfy the same conditions on Y9' and V. This
leads to an integral equation for g in terms of g', as well as to the inverse.

As discussed for (26) and (53),

(64) {0, d2}={ I +U 1 , 0 2 +U2} ={(01 , U2'}-{2, U1}+{U1 , U2}S =0.

Using the definitions of g and g' as in (23) and (43), and the asymptotic u and u' as
in (22) and (42), we obtain

(6 )g(-f2, il) = 0 - -l, i2) + 199g (i, i09'( --?, i2)

) g'(-i2, il) +1g'(-i2, i)g(, il),

where the second version follows from the reciprocity theorem for g'. Relabeling -i2
as i2, we have
(66) g(i2, il) = g'(2, il) +.10g'(2, NO,( ril)

which applies as an integral equation for g in terms of g', or for the converse. This
form and a related one arose earlier [1] in reducing functional equations for multiple-
scattering problems which involved an operator consisting of a plus additional
operations. The related form follows from (66) by using (52) as Af (f) =AWf(-i) and
then applying the reciprocity theorems. We construct -g'(1 2, -)g(-, l
0Vg'(, -r 2)g(-r 1, i) = g(-i, -i2) - g'(- 1 , -2), and then relabel -ri as ii to obtain

(67) g(R1, i2) = g'(i, 2) +Ag( 1 , i)g'(?, N2).

Since il and i2 are arbitrary, the only substantive difference in (66) and (67) is in the
location of i. Form (67) follows trivially from (66) if the obstacle has inversion
symmetry, but the present procedure shows it holds for all shapes.

Similarly we apply the generalized energy-type operation considered in (28) for
4 and (56) for 0' to the mixed set 0,1*, 412 to obtain

{()0*, 02) = {, *, U2} + {uPI*, 462} + 1u 1*, U2}S
(68)

= g(9 1 , ) + g'*(i2, i) +dgg'*(R, POO, 12).

For lossless obstacles,

(69) g(01, r2) = g'*(02, it) -- (, 9)g(0, ),
as follows directly from (66) by using (61) for lossless g'. From (69) and (61) (or from
(66), (67), and (61)), we have

(70)g(0, N )- *(f2, it) = A['*(, NOg~, N)+ Of(, 2)*(?, ?0]

=-A[g'*(, ~g(, 12) + g'(I, i)g*(2, N)]

If the obstacle has inversion symmetry, then

(71) -Re g(Pi, ?2) = Re Ag'*(, t,)g(f, ?2) =M Im g'(f, ) Im g(0, ?2 ),

where g' = i lmg'.
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For nonsyxametrical obstacles, from (66) and (67) in briefer notation

(72) g 1 2 =g1 2 +1MgPg, 2 , g 2 1 =g92 1 +/,(g 2 ,g'l)*.

Using (66) for lossless obstacles, i.e., g2*= -g 12, we convert g* 1 to

(73) 91 =-g912 '*

which together with g12 of (72) leads to
(7)*t +* l '

(74) 9 12 +9 21 =.dMg 1,(g, 2 -g2), g, 2-g 2*1 = 2gt 2 +.agt,(g,2 + g2,).

Writing

g 12 =S 1 2 +A 1 2 , g21 =S 1 2 -A 1 2 , S 12 =1(g12+g 2 1), A 12 =2(g12-g 2 1),

P12=g12+g21=2ReS1 2 +2iImAI2, m12=g12-g9l =2ilmS12 +2ReA 1 2,

We recast (74) as

(76) M12 = 2g 2 +.,g'1 p,2, P12 = g'lr,2.

Thus, introducing .A, we uncouple m and p by

m12 = 2g2 +./frgi,.Apgrpmp2 ,

P12 = 2A,grgr 2 +A9Prg r.'IMg9pPP2 ,

which supplement the original integral equation (66) when the obstacle is lossless.

5. Supplementary considerations and applications. The form (67) arose earlier
for the two-dimensional problem of scattering by a grating of equal spaced parallel
cylinders [1]. Using a symbolic procedure and the energy theorem (32) for lossless g
having inversion symmetry, it was shown that Re g 2 = 0 of (62) was satisfied. Writing
(67) for the two-dimensional case (with , f2 replaced by 01, 02 with no function-
relevant connotation) as

g(0 1, 92) g'(01 , 02) + Ff j 0 1 , 0)g'(0, 02) do

(78)
1 J dO[2,irS(i9-01)+g(01, 0)]g'(0, 02)
21r

provides the starting point [1, (55)] of the earlier development. The corresponding
symbolic version in [1, (55a)],

(79) Pg, = g, g'._.'g,

was used to construct [1, (57)]

(80) g' = P-'g =p- 2p*g = P-12[g( , 002)+2- g*(6,0')g(0',02)dO']

Applying the two-dimensional case case of (32) led to

(81) Re g'(01, 02) = 0, g'(0, 02) = lP-112i Im g(, 02)

where the first equality corresponds to (62); for the second, we invert via P*(Pg') - P*g
to reconstruct (32). See [1] for applications of (78) and (81) in reducing the multiple
scattering amplitude.
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The integral equation (78) was also applied in [1, (104)] to circular cylinders with
amplitudes

(82) g(Oa)= Y. ane i' ° - ,  g'(O at)= a. e'n'.0-,)

t =-

to obtain

(83) a. =an -ana., a. =a,,/(1 +an)

in terms of the known scattering coefficients an. Using g in the energy theorem (32)
for lossless scatterers led to -Re an = a,, 12, and consequently to

(84) an= i Im an/11 +anj 2

as discussed for [1, (104)] and exhibited for the boundary conditions (4) and (5).
The coefficients an and a. corresponding essentially to all conditions (4)-(7) were

consid...red before [11] in the context of scattering by random distributions of radially
symmetric obstacles. Thus, all cases are covered by

R~oJ,, -o¢'(85) a n= R nJe.- I n' n€ =j.(ka), Ye.= j.+iff'.= Y.1',

where jg =, J and Y = h, H, and the prime indicates differentiation with respect to
argument. (See [111 for one-dimensional analogues for J, Ye for n = 0, 1.) for the
boundary conditions (4), (5), (6) we let R = oo, 0, Z/k respectively; for the transition
conditions (7),

(86) Rn = W'(Ka)/. (Ka), C = B = (CB)11 2

where C represents an impedance.
From (83), we have

(87) a = i(RJn -j,')/(R,Y., -Y'") i i(R4. -Y'")/D.

where Jn and Xn are real functions of ka, and R. is real if the parameters Z or B
and K are real (lossless obstacles). In general

(88) Re a' W Im R/ID. 2 =- WIIm RI/ID. 2, W = 1/(ka)2, 2/wrka,

where W =j0,,Kn' -;,,'. is the Wronskian. Inverting the development of (84),

(89) a- a-Ia 2  n2(89) ~ ~a. 1 1l-a'. 2  a+a 11-a' ,

which for lossless obstacles yields

(90) -Re an = a I an22.

More generally
-Re an' 12 a' I'

(91) -Rea. -Ian Ie= . I 2,
a a n

with -Re a, as in (88) isolates the effects of absorption.
For all such problems we have the forms

-.g. -. D an' ' n,.
(92) an =- _+_ -a' a

-H,, J,,+iNn Ia,
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with J. and N. real for real parameters. Thus a . may be determined by inspection
of an.

The coefficients for the radially symmetric case give g in the form

(93) g(i.i0) = I a.c.T.(i.io), c.=2n+1,2-8.o, T.=PA-i'o),cosn(O-Oo).
n=O

The corresponding representations for 4 and u are

(94) 0 = Y .. (kr)inc.Tn (P 4,o),

(95) u = Y_ Ye (kr)inanc.T.,

and similarly the internal field is the series

(96) , = .(Kryinb.c.T..

The cases covered by (85) follow from direct application of (4)-(7). We may obtain
g of (93) from u of (95) by using Wn - i-"Y, and we may also obtain u of (95) by
substituting g of (93) into (25).

Similarly, in order to obtain

(97) g'(" -o) a'Cn7T. (f
directly instead of via the integral equation g'[g] of (57), we consider the analogous
nonscattering problems for (4)-(7) with the outgoing wave form u replaced by the
standing wave form

• .n r 1 [ e1 2))(98) u= irtanc.T., 2n = i mn - .,

The asymptotic form of u', from . Yi" and Ye j * is
(99) u' - 21 Y a'n. (i" -o) - 2'9* Y a "cn (- 1)-Tn (i. - o) = 249V - o) - 2!y*g'(-i" -o),

where we use (-1)nT. (x) = Tn (-x) to exhibit the required standing wave form (42).
Corresponding to (85) and (87) in terms of (86), the internal coefficients b. of 0,

and the analogues b, of 0', are given by

(100)bn = -iW/l (Ka)[R. Y. - Yen] = b'(1 - a'. ),
b" = - W/Jf, (Ka)[R,,,, - n' I = - W/O (Ka)D.

Using these and an and an, we consider the energy theorems (34) and (60). From
o'a= -i'o{II, ,0} = -Re f (O,*O/ik) d5i we construct

oA1 -5" ) lb, 12c,, Im [Bv1 " (Ka),9* (Ka)]

= -5 Z Ibn,12c,,nL9,(Ka) 2 Im R,,

where 5" = 47ra 2, 21ra, 2, and Im R, - 0. Similarly oA corresponds to replacing b. by
b'. Thus from (100),

(102) or = -fW 2 c Im R./[D12 = -o'o Y Re an"c, = -o'o Re g'(i. )

with SeW = cro, and Re a" as in (88). Similarly,

OA = -_W 2 Y Cn Im Rn/ID. 1211 -a'. 12 = -o Y (Re an + Ia. )c.

(103) = -(To [Re g(k k) +4Ig(p' f)I2]

= -o o Re g( .ui)-Os.
in terms of Re a. of (9 1), and ars = 2'01U *, u}I = Re f (u *au/ik) dY =oolg(.[~
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As another application of g[g'] of (66), we generalize existing long-wavelength
approximations [11], [12] for lossless scatterers to include loss. For lossless ellipsoids,
Im g1 2 to 0(k5 ) was derived [12] by perturbation procedures, and Re g 2 to 0(k 8 )
was obtained from the scattering theorem (32). Thus [12]

g(2, )-ig'-gR, g'=k 3A 3 +k 5A 5+0(k 7 ), -gR = k 6A 6+kA,+0(k' 0 ),
(104) -A6(r2, il) = J/NA3(i, P2)A3(, it),

-A80r2, it) = ,[A3(, iD)A5(i, i) +As(i, i2)A3(0, rt)],

2
where the A. were real functions of real parameters B and C = Bq so that g'
and gR corresponded to the imaginary and real parts of g. For complex B and C, we
write

(105) gV2, rt)-ig (r2, rt)

and iterate (66) to obtain

(106) g(02, it) = g'(02 , il) +dg'(; 2 , r)g'(i, ri) + O(g,3),

where the term 0(g' 3) is 0(k 9). Thus, by inspection of the existing results [12] for
form (104), we have for complex B and C

(107) Im g(; 2, f)-Re g', Re g(; 2, ;9) -Img' -gR,

where Im g' and g R correspond to absorption and scattering losses respectively.
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